
Generics

Course Evaluations

Exam Review

Checkout Generics project from SVN





Schedule and expectations



Another way to make code 
more re-useful



 Collections just stored Objects
◦ Better than creating different collection classes for 

each kind of object to be stored

◦ Could put anything in them because of 
polymorphism

 Used casts to get types right:
◦ ArrayList songs = new ArrayList();

songs.add(new Song(“Dawn Chorus”,“Modern English”));

…

Song s = (Song) songs.get(1);

◦ songs.add(new Artist(“A Flock of Seagulls”));

Song t = (Song) songs.get(2);

Q1



 Can define collections and other classes 
using type parameters
◦ ArrayList<Song> songs = new ArrayList<Song>();

songs.add(new Song(“Dawn Chorus”, “Modern English”));

…

Song s = songs.get(1); // no cast needed

◦ songs.add(new Artist(“A Flock of Seagulls”));

 Lets us use these classes:
◦ in a variety of circumstances

◦ with strong type checking

◦ without having to write lots of casts

compile-time 
error

Q2



 Create a doubly linked list

 Include min() and max() methods

 Use polymorphism rather than null checks for 
the start and end of the list

 Include fromArray() factory method

Q3-Q5



 Type parameters:
◦ class DLList<E>

 Bounds:
◦ class DLList<E extends Comparable>

◦ class DLList<E extends Comparable<E>>

◦ class DLList<E extends Comparable<? super E>>

 Generic methods:
◦ public static <T> void shuffle(T[] array)

Q6-7, turn in



 Exam is Tuesday, 1:00 pm O257 (Curt’s 
section), O259 (Delvin’s section)

 Same format as previous exams, possibly a 
little longer since final exam

 Comprehensive, but focused on 
Ch. 11, 14-17, 20 



h
tt

p
:/
/x

k
c
d
.c

o
m

/2
4

2
/



Your chance to improve 
instruction, courses, and 
curricula.


